Universal Scaling Limits for Generalized Gamma Polytopes
Autor: | Grote, Julian |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Fix a space dimension $d\ge 2$, parameters $\alpha > -1$ and $\beta \ge 1$, and let $\gamma_{d,\alpha, \beta}$ be the probability measure of an isotropic random vector in $\mathbb{R}^d$ with density proportional to \begin{align*} ||x||^\alpha\, \exp\left(-\frac{\|x\|^\beta}{\beta}\right), \qquad x\in \mathbb{R}^d. \end{align*} By $K_\lambda$, we denote the Generalized Gamma Polytope arising as the random convex hull of a Poisson point process in $\mathbb{R}^d$ with intensity measure $\lambda\gamma_{d,\alpha,\beta}$, $\lambda>0$. We establish that the scaling limit of the boundary of $K_\lambda$, as $\lambda \rightarrow \infty$, is given by a universal `festoon' of piecewise parabolic surfaces, independent of $\alpha$ and $\beta$. Moreover, we state a list of other large scale asymptotic results, including expectation and variance asymptotics, central limit theorems, concentration inequalities, Marcinkiewicz-Zygmund-type strong laws of large numbers, as well as moderate deviation principles for the intrinsic volumes and face numbers of $K_\lambda$. Comment: 19 pages, 7 figures |
Databáze: | arXiv |
Externí odkaz: |