Autor: |
Camargo, Javier, Maya, David, Ortiz, Luis |
Rok vydání: |
2018 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
DOI: |
10.1016/j.topol.2018.10.007 |
Popis: |
A continuum is a compact connected metric space. A non-empty closed subset $B$ of a continuum $X$ does not block $x\in X\setminus B$ provided that the union of all subcontinua of $X$ containing $x$ and contained in $X\setminus B$ is dense in $X$. We denote the collection of all non-empty closed subset $B$ of $X$ such that $B$ does not block each element of $X\setminus B$ by $NB(F_1(X))$. In this paper we show some properties of the hyperspace $NB(F_1(X))$. Particularly, we prove that the simple closed curve is the unique continuum $X$ such that $NB(F_1(X))=F_1(X)$, given a positive answer to a question posed by Escobedo, Estrada-Obreg\'on and Villanueva in 2012. |
Databáze: |
arXiv |
Externí odkaz: |
|