The hyperspace of non blockers of $F_1(X)$

Autor: Camargo, Javier, Maya, David, Ortiz, Luis
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.topol.2018.10.007
Popis: A continuum is a compact connected metric space. A non-empty closed subset $B$ of a continuum $X$ does not block $x\in X\setminus B$ provided that the union of all subcontinua of $X$ containing $x$ and contained in $X\setminus B$ is dense in $X$. We denote the collection of all non-empty closed subset $B$ of $X$ such that $B$ does not block each element of $X\setminus B$ by $NB(F_1(X))$. In this paper we show some properties of the hyperspace $NB(F_1(X))$. Particularly, we prove that the simple closed curve is the unique continuum $X$ such that $NB(F_1(X))=F_1(X)$, given a positive answer to a question posed by Escobedo, Estrada-Obreg\'on and Villanueva in 2012.
Databáze: arXiv