Boundaries of Baumslag-Solitar Groups
Autor: | Guilbault, Craig R., Moran, Molly A., Tirel, Carrie J. |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Algebr. Geom. Topol. 19 (2019) 2077-2097 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/agt.2019.19.2077 |
Popis: | A $\mathcal{Z}$-structure on a group $G$ was introduced by Bestvina in order to extend the notion of a group boundary beyond the realm of CAT(0) and hyperbolic groups. A refinement of this notion, introduced by Farrell and Lafont, includes a $G$-equivariance requirement, and is known as an $\mathcal{EZ}$-structure. The general questions of which groups admit $\mathcal{Z}$- or $\mathcal{EZ}$-structures remain open. In this paper we add to the current knowledge by showing that all Baumslag-Solitar groups admit $\mathcal{EZ}$-structures and all generalized Baumslag-Solitar groups admit $\mathcal{Z}$-structures. Comment: 18 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |