A counterexample to a conjecture of Larman and Rogers on sets avoiding distance 1
Autor: | Filho, Fernando Mário de Oliveira, Vallentin, Frank |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Mathematika 65 (2019) 785-787 |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/S0025579319000160 |
Popis: | For $n \geq 2$ we construct a measurable subset of the unit ball in $\mathbb{R}^n$ that does not contain pairs of points at distance 1 and whose volume is greater than $(1/2)^n$ times the volume of the ball. This disproves a conjecture of Larman and Rogers from 1972. Comment: 3 pages, 1 figure; final version to appear in Mathematika |
Databáze: | arXiv |
Externí odkaz: |