A counterexample to a conjecture of Larman and Rogers on sets avoiding distance 1

Autor: Filho, Fernando Mário de Oliveira, Vallentin, Frank
Rok vydání: 2018
Předmět:
Zdroj: Mathematika 65 (2019) 785-787
Druh dokumentu: Working Paper
DOI: 10.1112/S0025579319000160
Popis: For $n \geq 2$ we construct a measurable subset of the unit ball in $\mathbb{R}^n$ that does not contain pairs of points at distance 1 and whose volume is greater than $(1/2)^n$ times the volume of the ball. This disproves a conjecture of Larman and Rogers from 1972.
Comment: 3 pages, 1 figure; final version to appear in Mathematika
Databáze: arXiv