On the nonexistence of Green's function and failure of the strong maximum principle

Autor: Orsina, Luigi, Ponce, Augusto C.
Rok vydání: 2018
Předmět:
Zdroj: J. Math. Pures Appl. (2019)
Druh dokumentu: Working Paper
DOI: 10.1016/j.matpur.2019.06.001
Popis: Given any Borel function $V : \Omega \to [0, +\infty]$ on a smooth bounded domain $\Omega \subset \mathbb{R}^{N}$, we establish that the strong maximum principle for the Schr\"odinger operator $-\Delta + V$ in $\Omega$ holds in each Sobolev-connected component of $\Omega \setminus Z$, where $Z \subset \Omega$ is the set of points which cannot carry a Green's function for $- \Delta + V$. More generally, we show that the equation $- \Delta u + V u = \mu$ has a distributional solution in $W_{0}^{1, 1}(\Omega)$ for a nonnegative finite Borel measure $\mu$ if and only if $\mu(Z) = 0$.
Databáze: arXiv