Exact Formulas for Invariants of Hilbert Schemes
Autor: | Gillman, Nate, Gonzalez, Xavier, Schoenbauer, Matthew |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Res. Number Theory (2018) 4:39 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s40993-018-0132-z |
Popis: | A theorem of G\"ottsche establishes a connection between cohomological invariants of a complex projective surface $S$ and corresponding invariants of the Hilbert scheme of $n$ points on $S.$ This relationship is encoded in certain infinite product $q$-series which are essentially modular forms. Here we make use of the circle method to arrive at exact formulas for certain specializations of these $q$-series, yielding convergent series for the signature and Euler characteristic of these Hilbert schemes. We also analyze the asymptotic and distributional properties of the $q$-series' coefficients. Comment: 25 pages, 1 figure, Accepted for publication in Research in Number Theory |
Databáze: | arXiv |
Externí odkaz: |