Infinite dimensional holomorphic homogeneous regular domains
Autor: | Chu, Cho-Ho, Kim, Kang-Tae, Kim, Sejun |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | J. Geom. Anal. 30 (2020) 223-247 |
Druh dokumentu: | Working Paper |
Popis: | We extend the concept of a finite dimensional {\it holomorphic homogeneous regular} (HHR) domain and some of its properties to the infinite dimensional setting. In particular, we show that infinite dimensional HHR domains are domains of holomorphy and determine completely the class of infinite dimensional bounded symmetric domains which are HHR. We compute the greatest lower bound of the squeezing function of all HHR bounded symmetric domains, including the two exceptional domains. We also show that uniformly elliptic domains in Hilbert spaces are HHR. Comment: 21 pages, 0 figures |
Databáze: | arXiv |
Externí odkaz: |