Infinite dimensional holomorphic homogeneous regular domains

Autor: Chu, Cho-Ho, Kim, Kang-Tae, Kim, Sejun
Rok vydání: 2018
Předmět:
Zdroj: J. Geom. Anal. 30 (2020) 223-247
Druh dokumentu: Working Paper
Popis: We extend the concept of a finite dimensional {\it holomorphic homogeneous regular} (HHR) domain and some of its properties to the infinite dimensional setting. In particular, we show that infinite dimensional HHR domains are domains of holomorphy and determine completely the class of infinite dimensional bounded symmetric domains which are HHR. We compute the greatest lower bound of the squeezing function of all HHR bounded symmetric domains, including the two exceptional domains. We also show that uniformly elliptic domains in Hilbert spaces are HHR.
Comment: 21 pages, 0 figures
Databáze: arXiv