Autor: |
Harnik, Danny, Ta-Shma, Paula, Tsfadia, Eliad |
Rok vydání: |
2018 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We provide enhanced security against insider attacks in services that manage extremely sensitive data. One example is a #MeToo use case where sexual harassment complaints are reported but only revealed when another complaint is filed against the same perpetrator. Such a service places tremendous trust on service operators which our work aims to relieve. To this end we introduce a new autonomous data management concept which transfers responsibility for the sensitive data from administrators to secure and verifiable hardware. The main idea is to manage all data access via a cluster of autonomous computation agents running inside Intel SGX enclaves. These EConfidante agents share a secret data key which is unknown to any external entity, including the data service administrators, thus eliminating many opportunities for data exposure. In this paper we describe a detailed design of the EConfidante system, its flow and how it is managed and implemented. Our #MeToo design also uses an immutable distributed ledger which is built using components from a Blockchain framework. We implemented a proof of concept of our system for the #MeToo use case and analyze its security properties and implementation details. |
Databáze: |
arXiv |
Externí odkaz: |
|