Dirichlet divisor problem on Gaussian integers
Autor: | Lelechenko, Andrew V. |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Proceedings of the 6th International Conference on Analytic Number Theory and Spatial Tesselations, Kyiv, 2018, vol. 1, p. 76-86 |
Druh dokumentu: | Working Paper |
Popis: | We improve existing estimates of moments of the Riemann zeta function. As a consequence, we are able to derive new estimates for the asymptotic behaviour of $\sum_{N \alpha \le x} \mathfrak{t}_k(\alpha)$, where $N$ stands for the norm of a complex number and $\mathfrak{t}_k$ is the $k$-dimensional divisor function on Gaussian integers. Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |