Dirichlet divisor problem on Gaussian integers

Autor: Lelechenko, Andrew V.
Rok vydání: 2018
Předmět:
Zdroj: Proceedings of the 6th International Conference on Analytic Number Theory and Spatial Tesselations, Kyiv, 2018, vol. 1, p. 76-86
Druh dokumentu: Working Paper
Popis: We improve existing estimates of moments of the Riemann zeta function. As a consequence, we are able to derive new estimates for the asymptotic behaviour of $\sum_{N \alpha \le x} \mathfrak{t}_k(\alpha)$, where $N$ stands for the norm of a complex number and $\mathfrak{t}_k$ is the $k$-dimensional divisor function on Gaussian integers.
Comment: 10 pages
Databáze: arXiv