CM-points and Lattice counting on arithmetic compact Riemann surfaces
Autor: | Alsina, Montserrat, Chatzakos, Dimitrios |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $X(D,1) =\Gamma(D,1) \backslash \mathbb{H}$ denote the Shimura curve of level $N=1$ arising from an indefinite quaternion algebra of fixed discriminant $D$. We study the discrete average of the error term in the hyperbolic circle problem over Heegner points of discriminant $d <0$ on $X(D,1)$ as $d \to -\infty$. We prove that if $|d|$ is sufficiently large compared to the radius $r \approx \log X$ of the circle, we can improve on the classical $O(X^{2/3})$-bound of Selberg. Our result extends the result of Petridis and Risager for the modular surface to arithmetic compact Riemann surfaces. Comment: 10 pages; Final version to appear in Journal of Number Theory |
Databáze: | arXiv |
Externí odkaz: |