Local acyclicity in $p$-adic cohomology
Autor: | Lazda, Christopher |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove an analogue for $p$-adic coefficients of the Deligne--Laumon theorem on local acyclicity for curves. That is, for an overconvergent $F$-isocrystal $E$ on a relative curve $f:U\rightarrow S$ admitting a good compactification, we show that the cohomology sheaves of $\mathbf{R}f_!E$ are overconvergent isocrystals if and only if $E$ has constant Swan conductor at infinity. Comment: Section 6 largely rewritten. Final version to appear in Documenta Math |
Databáze: | arXiv |
Externí odkaz: |