Bifurcations and Monodromy of the Axially Symmetric 1:1:-2 Resonance

Autor: Efstathiou, Konstantinos, Hanßmann, Heinz, Marchesiello, Antonella
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.geomphys.2019.103493
Popis: We consider integrable Hamiltonian systems in three degrees of freedom near an elliptic equilibrium in 1:1:-2 resonance. The integrability originates from averaging along the periodic motion of the quadratic part and an imposed rotational symmetry about the vertical axis. Introducing a detuning parameter we find a rich bifurcation diagram, containing three parabolas of Hamiltonian Hopf bifurcations that join at the origin. We describe the monodromy of the resulting ramified 3-torus bundle as variation of the detuning parameter lets the system pass through 1:1:-2 resonance.
Databáze: arXiv