Parabolic vector bundles on Klein surfaces

Autor: Biswas, Indranil, Schaffhauser, Florent
Rok vydání: 2018
Předmět:
Zdroj: Illinois J. Math. 64, no. 1 (2020), 105-118
Druh dokumentu: Working Paper
DOI: 10.1215/00192082-8165614
Popis: Given a discrete subgroup $\Gamma$ of finite co-volume of $\mathrm{PGL}(2,\mathbb{R})$, we define and study parabolic vector bundles on the quotient $\Sigma$ of the (extended) hyperbolic plane by $\Gamma$. If $\Gamma$ contains an orientation-reversing isometry, then the above is equivalent to studying real and quaternionic parabolic vector bundles on the orientation cover of $\Sigma$. We then prove that isomorphism classes of polystable real and quaternionic parabolic vector bundles are in bijective correspondence with equivalence classes of real and quaternionic unitary representations of $\Gamma$. Similar results are obtained for compact-type real parabolic vector bundles over Klein surfaces.
Comment: Final version; to appear in Illinois Journal of Mathematics
Databáze: arXiv