Almost automorphy of surjective semiflows on compact Hausdorff spaces
Autor: | Dai, Xiongping |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $(T,X)$ with phase mapping $(t,x)\mapsto tx$ be a semiflow on a compact $\textrm{T}_2$-space $X$ with phase semigroup $T$ such that $tX=X$ for each $t$ of $T$. An $x\in X$ is called an \textit{a.a. point} if $t_nx\to y, x_n^\prime\to x^\prime$ and $t_nx_n^\prime=y$ implies $x=x^\prime$ for every net $\{t_n\}$ in $T$. In this paper, we study the a.a. dynamics of $(T,X)$; and moreover, we present a complete proof of Veech's structure theorem for a.a. flows. Comment: 26 pages; to appear in JMAA |
Databáze: | arXiv |
Externí odkaz: |