Deza graphs with parameters $(n,k,k-1,a)$ and $\beta=1$

Autor: Goryainov, Sergey, Haemers, Willem H., Kabanov, Vladislav V., Shalaginov, Leonid
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1002/jcd.21644
Popis: A Deza graph with parameters $(n,k,b,a)$ is a $k$-regular graph with $n$ vertices in which any two vertices have $a$ or $b$ ($a\leq b$) common neighbours. A Deza graph is strictly Deza if it has diameter $2$, and is not strongly regular. In an earlier paper, the two last authors et el. characterized the strictly Deza graphs with $b=k-1$ and $\beta > 1$, where $\beta$ is the number of vertices with $b$ common neighbours with a given vertex. Here we deal with the case $\beta=1$, thus we complete the characterization of strictly Deza graphs with $b=k-1$. It follows that all Deza graphs with $b=k-1$ and $\beta=1$ can be made from special strongly regular graphs, and we present several examples of such strongly regular graphs. A divisible design graph is a special Deza graph, and a Deza graph with $\beta=1$ is a divisible design graph. The present characterization reveals an error in a paper on divisible design graphs by the second author et al. We discuss the cause and the consequences of this mistake and give the required errata.
Databáze: arXiv