Optimal $L^1$-type relaxation rates for the Cahn-Hilliard equation on the line

Autor: Otto, Felix, Scholtes, Sebastian, Westdickenberg, Maria G.
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper we derive optimal algebraic-in-time relaxation rates to the kink for the Cahn-Hilliard equation on the line. We assume that the initial data have a finite distance---in terms of either a first moment or the excess mass---to a kink profile and capture the decay rate of the energy and the perturbation. Our tools include Nash-type inequalities, duality arguments, and Schauder estimates.
Databáze: arXiv