Autor: |
Otto, Felix, Scholtes, Sebastian, Westdickenberg, Maria G. |
Rok vydání: |
2018 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
In this paper we derive optimal algebraic-in-time relaxation rates to the kink for the Cahn-Hilliard equation on the line. We assume that the initial data have a finite distance---in terms of either a first moment or the excess mass---to a kink profile and capture the decay rate of the energy and the perturbation. Our tools include Nash-type inequalities, duality arguments, and Schauder estimates. |
Databáze: |
arXiv |
Externí odkaz: |
|