Bia{\l}ynicki-Birula decomposition for reductive groups
Autor: | Jelisiejew, Joachim, Sienkiewicz, Łukasz |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We generalize the Bia{\l}ynicki-Birula decomposition from actions of $G_m$ on smooth varieties to actions of linearly reductive group ${\bf G}$ on finite type schemes and algebraic spaces. We also provide a relative version and briefly discuss the case of algebraic stacks. We define the Bia{\l}ynicki-Birula decomposition functorially: for a fixed ${\bf G}$-scheme $X$ and a monoid $\overline{\bf G}$ which partially compactifies ${\bf G}$, the BB decomposition parameterizes ${\bf G}$-schemes over $X$ for which the ${\bf G}$-action extends to the $\overline{\bf G}$-action. The freedom of choice of $\overline{\bf G}$ makes the theory richer than the $G_m$-case. Comment: v3, final. To appear in Journal de Math\'ematiques Pures et Appliqu\'ees |
Databáze: | arXiv |
Externí odkaz: |