Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

Autor: Bringmann, Karl, Husfeldt, Thore, Magnusson, Måns
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: We show that the eccentricities, diameter, radius, and Wiener index of an undirected $n$-vertex graph with nonnegative edge lengths can be computed in time $O(n\cdot \binom{k+\lceil\log n\rceil}{k} \cdot 2^k k^2 \log n)$, where $k$ is the treewidth of the graph. For every $\epsilon>0$, this bound is $n^{1+\epsilon}\exp O(k)$, which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form $\log^d n$ to $\binom{d+\lceil\log n\rceil}{d}$, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number.
Databáze: arXiv