Representation theory of symmetric groups and the strong Lefschetz property

Autor: Kang, Seok-Jin, Kim, Young-Rock, Shin, Yong-Su
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: We investigate the structure and properties of an Artinian monomial complete intersection quotient $A(n,d)=\mathbf{k} [x_{1}, \ldots, x_{n}] \big / (x_{1}^{d}, \ldots, x_{n}^d)$. We construct explicit homogeneous bases of $A(n,d)$ that are compatible with the $S_{n}$-module structure for $n=3$, all exponents $d \ge 3$ and all homogeneous degrees $j \ge 0$. Moreover, we derive the multiplicity formulas, both in recursive form and in closed form, for each irreducible component appearing in the $S_{3}$-module decomposition of homogeneous subspaces. 4, 5$.
Databáze: arXiv