On the existence of translating solutions of mean curvature flow in slab regions
Autor: | Bourni, Theodora, Langford, Mat, Tinaglia, Giuseppe |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove, in all dimensions $n\geq 2$, that there exists a convex translator lying in a slab of width $\pi\sec\theta$ in $\mathbb{R}^{n+1}$ (and in no smaller slab) if and only if $\theta\in[0,\frac{\pi}{2}]$. We also obtain convexity and regularity results for translators which admit appropriate symmetries and study the asymptotics and reflection symmetry of translators lying in slab regions. Comment: We have made some updates to the introduction. The mathematical content is unchanged from version 2 |
Databáze: | arXiv |
Externí odkaz: |