Autor: |
Burke, James V., Engle, Abraham |
Rok vydání: |
2018 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
This work concerns the local convergence theory of Newton and quasi-Newton methods for convex-composite optimization: minimize f(x):=h(c(x)), where h is an infinite-valued proper convex function and c is C^2-smooth. We focus on the case where h is infinite-valued piecewise linear-quadratic and convex. Such problems include nonlinear programming, mini-max optimization, estimation of nonlinear dynamics with non-Gaussian noise as well as many modern approaches to large-scale data analysis and machine learning. Our approach embeds the optimality conditions for convex-composite optimization problems into a generalized equation. We establish conditions for strong metric subregularity and strong metric regularity of the corresponding set-valued mappings. This allows us to extend classical convergence of Newton and quasi-Newton methods to the broader class of non-finite valued piecewise linear-quadratic convex-composite optimization problems. In particular we establish local quadratic convergence of the Newton method under conditions that parallel those in nonlinear programming when h is non-finite valued piecewise linear. |
Databáze: |
arXiv |
Externí odkaz: |
|