Local models for conical K\'ahler-Einstein metrics

Autor: de Borbon, Martin, Spotti, Cristiano
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1090/proc/14302
Popis: In this note we use the Calabi ansatz, in the context of metrics with conical singularities along a divisor, to produce regular Calabi-Yau cones and K\"ahler-Einstein metrics of negative Ricci with a cuspidal point. As an application, we describe singularities and cuspidal ends of the completions of the complex hyperbolic metrics on the moduli spaces of ordered configurations of points in the projective line introduced by Thurston and Deligne-Mostow.
Databáze: arXiv