Autor: |
Bartolucci, Daniele, Jevnikar, Aleks, Lee, Youngae, Yang, Wen |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Comm. PDEs (2019) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1080/03605302.2019.1581801 |
Popis: |
We consider the Gel'fand problem, $$ \begin{cases} \Delta w_{\varepsilon}+\varepsilon^2 h e^{w_{\varepsilon}}=0\quad&\mbox{in}\quad\Omega, w_{\varepsilon}=0\quad&\mbox{on}\quad\partial\Omega, \end{cases} $$ where $h$ is a nonnegative function in ${\Omega\subset\mathbb{R}^2}$. Under suitable assumptions on $h$ and $\Omega$, we prove the local uniqueness of $m-$bubbling solutions for any $\varepsilon>0$ small enough. |
Databáze: |
arXiv |
Externí odkaz: |
|