Local uniqueness of $m$-bubbling sequences for the Gel'fand equation

Autor: Bartolucci, Daniele, Jevnikar, Aleks, Lee, Youngae, Yang, Wen
Rok vydání: 2018
Předmět:
Zdroj: Comm. PDEs (2019)
Druh dokumentu: Working Paper
DOI: 10.1080/03605302.2019.1581801
Popis: We consider the Gel'fand problem, $$ \begin{cases} \Delta w_{\varepsilon}+\varepsilon^2 h e^{w_{\varepsilon}}=0\quad&\mbox{in}\quad\Omega, w_{\varepsilon}=0\quad&\mbox{on}\quad\partial\Omega, \end{cases} $$ where $h$ is a nonnegative function in ${\Omega\subset\mathbb{R}^2}$. Under suitable assumptions on $h$ and $\Omega$, we prove the local uniqueness of $m-$bubbling solutions for any $\varepsilon>0$ small enough.
Databáze: arXiv