Autor: |
Chakrabarti, D., Edholm, L. D., McNeal, J. D. |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Adv. Math. 341 (2019), 616-656 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1016/j.aim.2018.10.041 |
Popis: |
Expected duality and approximation properties are shown to fail on Bergman spaces of domains in $\mathbb{C}^n$, via examples. When the domain admits an operator satisfying certain mapping properties, positive duality and approximation results are proved. Such operators are constructed on generalized Hartogs triangles. On a general bounded Reinhardt domain, norm convergence of Laurent series of Bergman functions is shown. This extends a classical result on Hardy spaces of the unit disc. |
Databáze: |
arXiv |
Externí odkaz: |
|