Duality and approximation of Bergman spaces

Autor: Chakrabarti, D., Edholm, L. D., McNeal, J. D.
Rok vydání: 2018
Předmět:
Zdroj: Adv. Math. 341 (2019), 616-656
Druh dokumentu: Working Paper
DOI: 10.1016/j.aim.2018.10.041
Popis: Expected duality and approximation properties are shown to fail on Bergman spaces of domains in $\mathbb{C}^n$, via examples. When the domain admits an operator satisfying certain mapping properties, positive duality and approximation results are proved. Such operators are constructed on generalized Hartogs triangles. On a general bounded Reinhardt domain, norm convergence of Laurent series of Bergman functions is shown. This extends a classical result on Hardy spaces of the unit disc.
Databáze: arXiv