Mountain pass type periodic solutions for Euler-Lagrange equations in anisotropic Orlicz-Sobolev space
Autor: | Chmara, Magdalena, Maksymiuk, Jakub |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Using the Mountain Pass Theorem, we establish the existence of periodic solution for Euler-Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part $K-W$ and a forcing term. We consider two situations: $G$ satisfying $\Delta_2\cap\nabla_2$ in infinity and globally. We give conditions on the growth of the potential near zero for both situations. |
Databáze: | arXiv |
Externí odkaz: |