The Probability that Ideals in a Number Ring are k-wise Relatively r-Prime

Autor: DeMoss, Ryan D., Sittinger, Brian D.
Rok vydání: 2018
Předmět:
Zdroj: International Journal of Number Theory, Vol. 16, No. 08, pp.1753-1765 (2020)
Druh dokumentu: Working Paper
Popis: We say that n ideals of algebraic integers in a fixed number ring are k-wise relatively r-prime if any k of them are relatively r-prime. In this article, we provide an exact formula for the probability that n nonzero ideals of algebraic integers in a fixed number ring are k-wise relatively r-prime.
Comment: Final published version of the article
Databáze: arXiv