The Probability that Ideals in a Number Ring are k-wise Relatively r-Prime
Autor: | DeMoss, Ryan D., Sittinger, Brian D. |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | International Journal of Number Theory, Vol. 16, No. 08, pp.1753-1765 (2020) |
Druh dokumentu: | Working Paper |
Popis: | We say that n ideals of algebraic integers in a fixed number ring are k-wise relatively r-prime if any k of them are relatively r-prime. In this article, we provide an exact formula for the probability that n nonzero ideals of algebraic integers in a fixed number ring are k-wise relatively r-prime. Comment: Final published version of the article |
Databáze: | arXiv |
Externí odkaz: |