The $r$-derangement numbers
Autor: | Wang, Chenying, Miska, Piotr, Mező, István |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.disc.2016.10.012 |
Popis: | The classical derangement numbers count fixed point-free permutations. In this paper we study the enumeration problem of generalized derangements, when some of the elements are restricted to be in distinct cycles in the cycle decomposition. We find exact formula, combinatorial relations for these numbers as well as analytic and asymptotic description. Moreover, we study deeper number theoretical properties, like modularity, $p$-adic valuations, and diophantine problems. Comment: Published in Discrete Mathematics |
Databáze: | arXiv |
Externí odkaz: |