Autor: |
Eklund, Ted, Lindström, Mikael, Pirasteh, Maryam M., Sanatpour, Amir H., Wikman, Niklas |
Rok vydání: |
2018 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We characterize boundedness and compactness of the classical Volterra operator $T_g \colon H_{v_{\alpha}}^{\infty} \to H^{\infty}$ induced by a univalent function $g$ for standard weights $v_{\alpha}$ with $0 \leq \alpha < 1$, partly answering an open problem posed by A. Anderson, M. Jovovic and W. Smith. We also study boundedness, compactness and weak compactness of the generalized Volterra operator $T_g^{\varphi}$ mapping between Banach spaces of analytic functions on the unit disc satisfying certain general conditions. |
Databáze: |
arXiv |
Externí odkaz: |
|