Spatial Isolation Implies Zero Knowledge Even in a Quantum World
Autor: | Chiesa, Alessandro, Forbes, Michael A., Gur, Tom, Spooner, Nicholas |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assumption: if the provers are spatially isolated, then they can be assumed to be playing independent strategies. Quantum mechanics, however, tells us that this assumption is unrealistic, because spatially-isolated provers could share a quantum entangled state and realize a non-local correlated strategy. The MIP* model captures this setting. In this work we study the following question: does spatial isolation still suffice to unconditionally achieve zero knowledge even in the presence of quantum entanglement? We answer this question in the affirmative: we prove that every language in NEXP has a 2-prover zero knowledge interactive proof that is sound against entangled provers; that is, NEXP \subseteq ZK-MIP*. Our proof consists of constructing a zero knowledge interactive PCP with a strong algebraic structure, and then lifting it to the MIP* model. This lifting relies on a new framework that builds on recent advances in low-degree testing against entangled strategies, and clearly separates classical and quantum tools. Our main technical contribution consists of developing new algebraic techniques for obtaining unconditional zero knowledge; this includes a zero knowledge variant of the celebrated sumcheck protocol, a key building block in many probabilistic proof systems. A core component of our sumcheck protocol is a new algebraic commitment scheme, whose analysis relies on algebraic complexity theory. Comment: 55 pages. arXiv admin note: text overlap with arXiv:1704.02086 |
Databáze: | arXiv |
Externí odkaz: |