Transverse Wave Induced Kelvin-Helmholtz Rolls in Spicules

Autor: Antolin, Patrick, Schmit, Don, Pereira, Tiago M. D., De Pontieu, Bart, De Moortel, Ineke
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
DOI: 10.3847/1538-4357/aab34f
Popis: In addition to their jet-like dynamic behaviour, spicules usually exhibit strong transverse speeds, multi-stranded structure and heating from chromospheric to transition region temperatures. In this work we first analyse \textit{Hinode} \& \textit{IRIS} observations of spicules and find different behaviours in terms of their Doppler velocity evolution and collective motion of their sub-structure. Some have a Doppler shift sign change that is rather fixed along the spicule axis, and lack coherence in the oscillatory motion of strand-like structure, matching rotation models or long wavelength torsional Alfv\'en waves. Others exhibit a Doppler shift sign change at maximum displacement and coherent motion of their strands, suggesting a collective MHD wave. By comparing with an idealised 3-D MHD simulation combined with radiative transfer modelling, we analyse the role of transverse MHD waves and associated instabilities in spicule-like features. We find that Transverse Wave Induced Kelvin-Helmholtz (TWIKH) rolls lead to coherence of strand-like structure in imaging and spectral maps, as seen in some observations. The rapid transverse dynamics and the density and temperature gradients at the spicule boundary lead to ring-shaped \ion{Mg}{2} k and \ion{Ca}{2} H source functions in the transverse cross-section, potentially allowing IRIS to capture the KHI dynamics. Twists and currents propagate along the spicule at Alfv\'enic speeds, and the temperature variations within TWIKH rolls produce sudden appearance / disappearance of strands seen in Doppler velocity and in \ion{Ca}{2} H intensity. However, only a mild intensity increase in higher temperature lines is obtained, suggesting there is an additional heating mechanism at work in spicules.
Comment: Accepted for publication in The Astrophysical Journal
Databáze: arXiv