Autor: |
Bshouty, Nader H., Bshouty-Hurani, Vivian E., Haddad, George, Hashem, Thomas, Khoury, Fadi, Sharafy, Omar |
Rok vydání: |
2018 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We give elementary proofs of several Stirling's precise bounds. We first improve all the precise bounds from the literature and give new precise bounds. In particular, we show that for all $n\ge 8$ $$\sqrt{2\pi n}\left(\frac{n}{e}\right)^n e^{\frac{1}{12n}-\frac{1}{360n^3+103n}} \ge n!\ge \sqrt{2\pi n}\left(\frac{n}{e}\right)^n e^{\frac{1}{12n}-\frac{1}{360n^3+102n}}$$ and for all $n\ge 3$ $$\sqrt{2\pi n}\left(\frac{n}{e}\right)^n e^{\frac{1}{12n+\frac{2}{5n}-\frac{1.1}{10n^3}}} \ge n!\ge \sqrt{2\pi n}\left(\frac{n}{e}\right)^n e^{\frac{1}{12n+\frac{2}{5n}-\frac{0.9}{10n^3}}}.$$ |
Databáze: |
arXiv |
Externí odkaz: |
|