Motivic Euler products and motivic height zeta functions
Autor: | Bilu, Margaret |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A motivic height zeta function associated to a family of varieties parametrised by a curve is the generating series of the classes, in the Grothendieck ring of varieties, of moduli spaces of sections of this family with varying degrees. This text is devoted to the study of the motivic height zeta function associated to a family of varieties with generic fiber having the structure of an equivariant compactification of a vector group. Our main theorem describes the convergence of this motivic height zeta function with respect to a topology on the Grothendieck ring of varieties coming from the theory of weights in cohomology. We deduce from it the asymptotic behaviour, as the degree goes to infinity, of a positive proportion of the coefficients of the Hodge-Deligne polynomial of the above moduli spaces: in particular, we get an estimate for their dimension and the number of components of maximal dimension. The main tools for this are a notion of motivic Euler product for series with coefficients in the Grothendieck ring of varieties, an extension of Hrushovski and Kazhdan's motivic Poisson summation formula, and a motivic measure on the Grothendieck ring of varieties with exponentials constructed using Denef and Loeser's motivic vanishing cycles. Comment: This is an updated version of the author's PhD thesis. Comments welcome! |
Databáze: | arXiv |
Externí odkaz: |