On the Latent Space of Wasserstein Auto-Encoders

Autor: Rubenstein, Paul K., Schoelkopf, Bernhard, Tolstikhin, Ilya
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: We study the role of latent space dimensionality in Wasserstein auto-encoders (WAEs). Through experimentation on synthetic and real datasets, we argue that random encoders should be preferred over deterministic encoders. We highlight the potential of WAEs for representation learning with promising results on a benchmark disentanglement task.
Databáze: arXiv