Quantitative aspects of acyclicity
Autor: | Kozlov, Dmitry N., Meshulam, Roy |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study several aspects of the $k$-th Cheeger constant of a complex X, a parameter that quantifies the distance of $X$ from a complex $Y$ with nontrivial $k$-th cohomology over $\mathbb{Z}_2$. Our results include general methods for bounding the cosystolic norm of a cochain and for bounding the Cheeger constant of a complex, a discussion of expansion of pseudomanifolds and geometric lattices, probabilistic upper bounds on Cheeger constants, and application of non-Abelian expansion to random complexes. Comment: 33 pages, 2 figures. Section 6 is an expanded version of arXiv:1308.3769 |
Databáze: | arXiv |
Externí odkaz: |