Autor: |
Masliuk, Hanna, Soldatov, Vitalii |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Methods Funct. Anal. Topology, Vol. 24 (2018), no. 2, 143-151 |
Druh dokumentu: |
Working Paper |
Popis: |
We study the most general class of linear boundary-value problems for systems of $r$-th order ordinary differential equations whose solutions range over the complex H\"older space $C^{n+r,\alpha}$, with $0\leq n\in\mathbb{Z}$ and $0<\alpha\leq1$. We prove a constructive criterion under which the solution to an arbitrary parameter-dependent problem from this class is continuous in $C^{n+r,\alpha}$ with respect to the parameter. We also prove a two-sided estimate for the degree of convergence of this solution to the solution of the corresponding nonperturbed problem. |
Databáze: |
arXiv |
Externí odkaz: |
|