Orthogonally additive polynomials on convolution algebras associated with a compact group
Autor: | Alaminos, J., Extremera, J., Godoy, M. L. C., Villena, A. R. |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $G$ be a compact group, let $X$ be a Banach space, and let $P\colon L^1(G)\to X$ be an orthogonally additive, continuous $n$-homogeneous polynomial. Then we show that there exists a unique continuous linear map $\Phi\colon L^1(G)\to X$ such that $P(f)=\Phi \bigl(f\ast\stackrel{n}{\cdots}\ast f \bigr)$ for each $f\in L^1(G)$. We also seek analogues of this result about $L^1(G)$ for various other convolution algebras, including $L^p(G)$, for $1< p\le\infty$, and $C(G)$. |
Databáze: | arXiv |
Externí odkaz: |