Positivity Results for spaces of rational curves

Autor: Beheshti, Roya, Riedl, Eric
Rok vydání: 2018
Předmět:
Zdroj: Alg. Number Th. 14 (2020) 485-501
Druh dokumentu: Working Paper
DOI: 10.2140/ant.2020.14.485
Popis: Let $X$ be a very general hypersurface of degree $d$ in $\mathbb{P}^n$. We investigate positivity properties of the spaces $R_e(X)$ of degree $e$ rational curves in $X$. We show that for small $e$, $R_e(X)$ has no rational curves meeting the locus of smooth embedded curves. We show that for $n \leq d$, there are no rational curves in the locus $Y \subset X$ swept out by lines. And we exhibit differential forms on a smooth compactification of $R_e(X)$ for every $e$ and $n-2 \geq d \geq \frac{n+1}{2}$.
Comment: revised version
Databáze: arXiv