Generalized K$\ddot{a}$hler Geometry and current algebras in classical N=2 superconformal WZW model
Autor: | Parkhomenko, S. E. |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | IJMPA, Vol.33, No.12, (2018) |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0217751X18500653 |
Popis: | I examine the Generalized K$\ddot{a}$hler geometry of classical $N=(2,2)$ superconformal WZW model on a compact group and relate the right-moving and left-moving Kac-Moody superalgebra currents to the Generalized K$\ddot{a}$hler geometry data using Hamiltonian formalism. It is shown that canonical Poisson homogeneous space structure induced by the Generalized K$\ddot{a}$hler geometry of the group manifold is crucial to provide $N=(2,2)$ superconformal sigma-model with the Kac-Moody superalgebra symmetries. Biholomorphic gerbe geometry is used to prove that Kac-Moody superalgebra currents are globally defined. Comment: LaTex, 17 pages |
Databáze: | arXiv |
Externí odkaz: |