The k-almost Ricci solitons and contact geometry

Autor: Ghosh, Amalendu, Patra, Dhriti Sundar
Rok vydání: 2018
Předmět:
Zdroj: J. Korean Math. Soc. 55 (2018), No. 1, pp. 161-174
Druh dokumentu: Working Paper
DOI: 10.4134/JKMS.j170103
Popis: The aim of this article is to study the k-almost Ricci soliton and k-almost gradient Ricci soliton on contact metric manifold. First, we prove that if a compact K-contact metric is a k-almost gradient Ricci soliton then it is isometric to a unit sphere S2n+1. Next, we extend this result on a compact k-almost Ricci soliton when the flow vector field X is contact. Finally, we study some special types of k-almost Ricci soliton where the potential vector field X is point wise collinear with the Reeb vector field {\xi} of the contact metric structure.
Databáze: arXiv