Benchmarking acid and base dopants with respect to enabling the ice V to XIII and ice VI to XV hydrogen-ordering phase transitions

Autor: Rosu-Finsen, Alexander, Salzmann, Christoph G.
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1063/1.5022159
Popis: Doping the hydrogen-disordered phases of ice V, VI and XII with hydrochloric acid (HCl) has led to the discovery of their hydrogen-ordered counterparts ices XIII, XV and XIV. Yet, the mechanistic details of the hydrogen-ordering phase transitions are still not fully understood. This includes in particular the role of the acid dopant and the defect dynamics that it creates within the ices. Here we investigate the effects of several acid and base dopants on the hydrogen ordering of ices V and VI with calorimetry and X-ray diffraction. HCl is found to be most effective for both phases which is attributed to a favourable combination of high solubility and strong acid properties which create mobile H3O+ defects that enable the hydrogen-ordering processes. Hydrofluoric acid (HF) is the second most effective dopant highlighting that the acid strengths of HCl and HF are much more similar in ice than they are in liquid water. Surprisingly, hydrobromic acid doping facilitates hydrogen ordering in ice VI whereas only a very small effect is observed for ice V. Conversely, lithium hydroxide (LiOH) doping achieves a performance comparable to HF-doping in ice V but it is ineffective in the case of ice VI. Sodium hydroxide, potassium hydroxide (as previously shown) and perchloric acid doping are ineffective for both phases. These findings highlight the need for future computational studies but also raise the question why LiOH-doping achieves hydrogen-ordering of ice V whereas potassium hydroxide doping is most effective for the 'ordinary' ice Ih.
Comment: 18 pages, 7 figures, 1 table
Databáze: arXiv