On the rate of convergence for the length of the longest common subsequences in hidden Markov models
Autor: | Houdré, Christian, Kerchev, George |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $(X, Y) = (X_n, Y_n)_{n \geq 1}$ be the output process generated by a hidden chain $Z = (Z_n)_{n \geq 1}$, where $Z$ is a finite state, aperiodic, time homogeneous, and irreducible Markov chain. Let $LC_n$ be the length of the longest common subsequences of $X_1, \ldots, X_n$ and $Y_1, \ldots, Y_n$. Under a mixing hypothesis, a rate of convergence result is obtained for $\mathbb{E}[LC_n]/n$. Comment: To appear in Journal of Applied Probability 56.2 (June 2019) |
Databáze: | arXiv |
Externí odkaz: |