Monotone dynamical systems with dense periodic points

Autor: Lemmens, Bas, van Gaans, Onno, van Imhoff, Hent
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper we prove a recent conjecture by M. Hirsch, which says that if $(f,\Omega)$ is a discrete time monotone dynamical system, with $f\colon \Omega\to\Omega$ a homeomorphism on an open connected subset of a finite dimensional vector space, and the periodic points of $f$ are dense in $\Omega$, then $f$ is periodic.
Comment: 5 pages
Databáze: arXiv