Monotone dynamical systems with dense periodic points
Autor: | Lemmens, Bas, van Gaans, Onno, van Imhoff, Hent |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we prove a recent conjecture by M. Hirsch, which says that if $(f,\Omega)$ is a discrete time monotone dynamical system, with $f\colon \Omega\to\Omega$ a homeomorphism on an open connected subset of a finite dimensional vector space, and the periodic points of $f$ are dense in $\Omega$, then $f$ is periodic. Comment: 5 pages |
Databáze: | arXiv |
Externí odkaz: |