Autor: |
Barrett, D. E., Edholm, L. D. |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Adv. Math. 364 (2020), 107012 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1016/j.aim.2020.107012 |
Popis: |
We compute the exact norms of the Leray transforms for a family $\mathcal{S}_{\beta}$ of unbounded hypersurfaces in two complex dimensions. The $\mathcal{S}_{\beta}$ generalize the Heisenberg group, and provide local projective approximations to any smooth, strongly $\mathbb{C}$-convex hypersurface $\mathcal{S}_{\beta}$ to two orders of tangency. This work is then examined in the context of projective dual $CR$-structures and the corresponding pair of canonical dual Hardy spaces associated to $\mathcal{S}_{\beta}$, leading to a universal description of the Leray transform and a factorization of the transform through orthogonal projection onto the conjugate dual Hardy space. |
Databáze: |
arXiv |
Externí odkaz: |
|