Optimal control of nonlinear elliptic problems with sparsity
Autor: | Ponce, Augusto C., Wilmet, Nicolas |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | SIAM J. Control Optim. 56 (2018), no. 4, 2513-2535 |
Druh dokumentu: | Working Paper |
DOI: | 10.1137/17M1161555 |
Popis: | We study the minimization of the cost functional \[ F(\mu) = \lVert u - u_d \rVert_{L^p(\Omega)} + \alpha \lVert \mu \rVert_{\mathcal{M}(\Omega)}, \] where the controls $\mu$ are taken in the space of finite Borel measures and $u \in W_0^{1, 1}(\Omega)$ satisfies the equation $- \Delta u + g(u) = \mu$ in the sense of distributions in $\Omega$ for a given nondecreasing continuous function $g : \mathbb{R} \to \mathbb{R}$ such that $g(0) = 0$. We prove that $F$ has a minimizer for every desired state $u_d \in L^1(\Omega)$ and every control parameter $\alpha > 0$. We then show that when $u_d$ is nonnegative or bounded, every minimizer of $F$ has the same property. Comment: 25 pages |
Databáze: | arXiv |
Externí odkaz: |