Dissipation for a non-convex gradient flow problem of a Patlack-Keller-Segel type for densities on $\mathbb{R}^n$, $n\geq 3$
Autor: | Carlen, Eric A., Ulusoy, Suleyman |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study an evolution equation that is the gradient flow in the $2$-Wasserstien metric of a non-convex functional for densities in $\mathbb{R}^n$ with $n \geq 3$. Like the Patlack-Keller-Segel system on $\mathbb{R}^2$, this evolution equation features a competition between the dispersive effects of diffusion, and the accretive effects of a concentrating drift. We determine a parameter range in which the diffusion dominates, and all mass leaves any fixed compact subset of $\mathbb{R}^n$ at an explicit polynomial rate. Comment: To appear in Nonlinear Analysis TMA |
Databáze: | arXiv |
Externí odkaz: |