Another proof of Grothendieck's theorem on the splitting of vector bundles on the projective line
Autor: | Schoemann, Claudia, Wiedmann, Stefan |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This note contains another proof of Grothendieck`s theorem on the splitting of vector bundles on the projective line over a field $k$. Actually the proof is formulated entirely in the classical terms of a lattice $\Lambda \cong k[T]^d$, discretely embedded into the vector space $V \cong K_\infty^d$, where $K_\infty \cong k((1/T))$ is the completion of the field of rational functions $k(T)$ at the place $\infty$ with the usual valuation. |
Databáze: | arXiv |
Externí odkaz: |