Quantum $L_\infty$ Algebras and the Homological Perturbation Lemma
Autor: | Doubek, Martin, Jurčo, Branislav, Pulmann, Ján |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Comm. Math. Phys. 367 (2019) 215-240 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00220-019-03375-x |
Popis: | Quantum $L_\infty$ algebras are a generalization of $L_\infty$ algebras with a scalar product and with operations corresponding to higher genus graphs. We construct a minimal model of a given quantum $L_\infty$ algebra via the homological perturbation lemma and show that it's given by a Feynman diagram expansion, computing the effective action in the finite-dimensional Batalin-Vilkovisky formalism. We also construct a homotopy between the original and this effective quantum $L_\infty$ algebra. Comment: v2: 27 pages, fixed typos and the section 4.4; v3: published version - shortened and removed the appendix on relationship between quantum master actions and brackets |
Databáze: | arXiv |
Externí odkaz: |