Left Translates of a Square Integrable Function on the Heisenberg group
Autor: | Radha, R., Adhikari, Saswata |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The aim of this paper is to study some properties of left translates of a square integrable function on the Heisenberg group. First, a necessary and sufficient condition for the existence of the canonical dual to a function $\varphi\in L^{2}(\mathbb{R}^{2n})$ is obtained in the case of twisted shift-invariant spaces. Further, characterizations of $\ell^{2}$-linear independence and the Hilbertian property of the twisted translates of a function $\varphi\in L^{2}(\mathbb{R}^{2n})$ are obtained. Later these results are shown in the case of the Heisenberg group. Comment: 13 pages |
Databáze: | arXiv |
Externí odkaz: |