Autor: |
Bonnefont, Michel, Golénia, Sylvain, Keller, Matthias, Liu, Shiping, Münch, Florentin |
Rok vydání: |
2017 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We study magnetic Schr\"odinger operators on graphs. We extend the notion of sparseness of graphs by including a magnetic quantity called the frustration index. This notion of magnetic sparse turn out to be equivalent to the fact that the form domain is an $\ell^{2}$ space. As a consequence, we get criteria of discreteness for the spectrum and eigenvalue asymptotics. |
Databáze: |
arXiv |
Externí odkaz: |
|