Families of Picard modular forms and an application to the Bloch-Kato conjecture

Autor: Hernandez, Valentin
Rok vydání: 2017
Předmět:
Zdroj: Compositio Math. 155 (2019) 1327-1401
Druh dokumentu: Working Paper
DOI: 10.1112/S0010437X1900736X
Popis: In this article we construct a $p$-adic three dimensional Eigenvariety for the group $U(2,1)(E)$, where $E$ is a quadratic imaginary field and $p$ is inert in $E$. The Eigenvariety parametrizes Hecke eigensystems on the space of overconvergent, locally analytic, cuspidal Picard modular forms of finite slope. The method generalized the one developed in Andreatta-Iovita-Pilloni by interpolating the coherent automorphic sheaves when the ordinary locus is empty. As an application of this construction, we reprove a particular case of the Bloch-Kato conjecture for some Galois characters of $E$, extending the result of Bellaiche-Chenevier to the case of a positive sign.
Comment: 71 pages
Databáze: arXiv